Plant pathology News

Plant Pathology News

Plant Pathology Opinions

Plant Pathology Meetings

Plant Path Associations

Plant Pathology Industry News

Natural use of biology to control disease in crops

In the soils of the world's cereal fields, a family tussle between related species of fungi is underway for control of the crops' roots, with food security threatened if the wrong side wins. Beneficial fungi can help plants to protect themselves from cousins eager to overwhelm the roots, but it's a closely fought battle.

Working out the right conditions to support those beneficial fungi and identifying the cereal varieties that are best suited to make the most of that help is no mean task, but now a young team of scientists from Rothamsted Research has come up with some answers. Their complete findings are published today in the Journal of Experimental Biology.

Take-all is a devastating root disease of cereal crops worldwide caused by the fungal pathogen, Gaeumannomyces tritici. Related species, notably G. hyphopodioides, are capable of immunising plant roots against the pathogen. Farmers struggle to control the disease because few chemical seed treatments are available and current biological strategies are hindered by the variety of soil types.

"This work aimed to explore whether wheat genetics can be exploited to help support and potentially build up populations of closely related take-all suppressing fungal species that are known to lower the disease levels caused by the take-all fungus," says Vanessa McMillan, co-author and postdoctoral researcher in plant pathology.

The team collected samples of the beneficial fungus from the fields of Rothamsted Farm and developed a laboratory test to explore their ability to colonise and protect the roots of barley, rye, wheat and the rye/wheat hybrid, triticale. In field trials, the team identified commercial cereal varieties that performed better than others.

"If the ability of wheat cultivars to support and be colonised by natural or introduced populations of beneficial Gaeumannomyces species could be harnessed and exploited, either through a seed dressing or via direct application into a crop's rooting zone, this could provide a potential biological management strategy for the control of take-all disease in wheat crops," notes McMillan, who leads the take-all research group at Rothamsted.

Understanding the complex interactions between the fungi and the cereal hosts will yield more information for developing strategies to control the disease.

"If this ability can be harnessed, it could aid in decision-making when selecting varieties to grow as an additional practical solution to manage take-all disease," adds Osborne, who is now Field Trials Manager in Crop Production Systems at the Agriculture and Horticulture Development Board (AHDB).

Source: https://www.sciencedaily.com/releases/

Privacy Policy | Email :editor [at] plantpathologynews.com