Plant Pathology News

Plant Pathology Opinions

Plant Pathology Meetings

Plant Path Associations

Plant Pathology - Altered DNA Potato

Dan Voytas is a plant geneticist at the University of Minnesota who headed to a nearby company called Cellectis Plant Sciences, where to apply his studies on fundamental DNA engineering.

His newest creation is a Ranger Russet potato that doesn’t accumulate sweet sugars at typical cold storage temperatures. That will let it last longer, and when it’s fried it won’t produce as much acrylamide, a suspected carcinogen.

What’s different about the potato is that it was bred with the help of gene editing, a new kind of technique for altering DNA that plant scientists say is going to be revolutionary for its simplicity and power. The technology could also be a way to engineer plants that avoid the stigma, and the regulations, normally associated with genetically modified organisms (GMOs).

In the case of the Ranger Russet, Voytas’s gene-editing technique, known as TALENs, left behind no trace other than a few deleted letters of DNA. The edit disabled a single gene that turns sucrose into glucose and fructose. Without it, Voytas thinks, the potatoes can be stored far longer without loss of quality. The potato is a prototype of what plant scientists say is a rapidly arriving new generation of genetically modified plants. With gene editing, small companies think they can very quickly develop new crops for a fraction of the typical cost—even in species so far mostly untouched by biotechnology, like avocados, sorghum, and decorative flowers.

Most genetically modified crops that have been grown commercially so far incorporate genes from bacteria to make them produce insecticides or resist weed killers. Public opposition and regulatory requirements make these transgenic plants expensive to develop. That is why nearly all biotech plants are lucrative, big-acreage crops like soy, corn, and cotton and are sold by just a few large companies, like Monsanto and DuPont.

In August, the U.S. Department of Agriculture told Cellectis that unlike transgenic plants, its potato wouldn’t be regulated. That means instead of being grown in fenced-in test plots and generating folder upon folder of safety data, the Ranger Russet may go quickly to the market. Two years ago the agency reached a similar conclusion when it considered a DNA-edited corn plant developed by Dow AgroSciences, although it isn’t being sold yet.

Scientists say products like the potato are just the start for gene-editing techniques in plants. The same technologies are going to allow far more sophisticated engineering, including manipulation of photosynthesis to make plants grow faster and yield more food. “It’s an enormous opportunity, an unfathomable opportunity,” says Martin Spalding, a plant researcher at Iowa State University.

Privacy Policy | Email :editor [at] plantpathologynews.com